Bottleneck T5 Text Autoencoder (via) Colab notebook by Linus Lee demonstrating his Contra Bottleneck T5 embedding model, which can take up to 512 tokens of text, convert that into a 1024 floating point number embedding vector... and then then reconstruct the original text (or a close imitation) from the embedding again.
This allows for some fascinating tricks, where you can do things like generate embeddings for two completely different sentences and then reconstruct a new sentence that combines the weights from both.
Recent articles
- Reverse engineering some updates to Claude - 31st July 2025
- Trying out Qwen3 Coder Flash using LM Studio and Open WebUI and LLM - 31st July 2025
- My 2.5 year old laptop can write Space Invaders in JavaScript now, using GLM-4.5 Air and MLX - 29th July 2025