Simon Willison’s Weblog

Subscribe
Atom feed for definitions

28 posts tagged “definitions”

Attempts to assign meaning to words and phrases.

2025

When attention is being appropriated, producers need to weigh the costs and benefits of the transaction. To assess whether the appropriation of attention is net-positive, it’s useful to distinguish between extractive and non-extractive contributions. Extractive contributions are those where the marginal cost of reviewing and merging that contribution is greater than the marginal benefit to the project’s producers. In the case of a code contribution, it might be a pull request that’s too complex or unwieldy to review, given the potential upside

Nadia Eghbal, Working in Public, via the draft LLVM AI tools policy

# 2nd October 2025, 12:44 pm / definitions, open-source, ai, generative-ai, llms, ai-assisted-programming, ai-ethics, vibe-coding

Designing agentic loops

Coding agents like Anthropic’s Claude Code and OpenAI’s Codex CLI represent a genuine step change in how useful LLMs can be for producing working code. These agents can now directly exercise the code they are writing, correct errors, dig through existing implementation details, and even run experiments to find effective code solutions to problems.

[... 1,667 words]

Cross-Agent Privilege Escalation: When Agents Free Each Other. Here's a clever new form of AI exploit from Johann Rehberger, who has coined the term Cross-Agent Privilege Escalation to describe an attack where multiple coding agents - GitHub Copilot and Claude Code for example - operating on the same system can be tricked into modifying each other's configurations to escalate their privileges.

This follows Johannn's previous investigation of self-escalation attacks, where a prompt injection against GitHub Copilot could instruct it to edit its own settings.json file to disable user approvals for future operations.

Sensible agents have now locked down their ability to modify their own settings, but that exploit opens right back up again if you run multiple different agents in the same environment:

The ability for agents to write to each other’s settings and configuration files opens up a fascinating, and concerning, novel category of exploit chains.

What starts as a single indirect prompt injection can quickly escalate into a multi-agent compromise, where one agent “frees” another agent and sets up a loop of escalating privilege and control.

This isn’t theoretical. With current tools and defaults, it’s very possible today and not well mitigated across the board.

More broadly, this highlights the need for better isolation strategies and stronger secure defaults in agent tooling.

I really need to start habitually running these things in a locked down container!

(I also just stumbled across this YouTube interview with Johann on the Crying Out Cloud security podcast.)

# 24th September 2025, 9:10 pm / definitions, security, ai, prompt-injection, generative-ai, llms, ai-assisted-programming, johann-rehberger, ai-agents

We define workslop as AI generated work content that masquerades as good work, but lacks the substance to meaningfully advance a given task.

Here’s how this happens. As AI tools become more accessible, workers are increasingly able to quickly produce polished output: well-formatted slides, long, structured reports, seemingly articulate summaries of academic papers by non-experts, and usable code. But while some employees are using this ability to polish good work, others use it to create content that is actually unhelpful, incomplete, or missing crucial context about the project at hand. The insidious effect of workslop is that it shifts the burden of the work downstream, requiring the receiver to interpret, correct, or redo the work. In other words, it transfers the effort from creator to receiver.

Kate Niederhoffer, Gabriella Rosen Kellerman, Angela Lee, Alex Liebscher, Kristina Rapuano and Jeffrey T. Hancock, Harvard Business Review

# 22nd September 2025, 11:21 pm / definitions, productivity, ai, generative-ai, llms, ai-ethics

I think “agent” may finally have a widely enough agreed upon definition to be useful jargon now

Visit I think "agent" may finally have a widely enough agreed upon definition to be useful jargon now

I’ve noticed something interesting over the past few weeks: I’ve started using the term “agent” in conversations where I don’t feel the need to then define it, roll my eyes or wrap it in scare quotes.

[... 1,199 words]

GPT-5 Thinking in ChatGPT (aka Research Goblin) is shockingly good at search

Visit GPT-5 Thinking in ChatGPT (aka Research Goblin) is shockingly good at search

“Don’t use chatbots as search engines” was great advice for several years... until it wasn’t.

[... 2,679 words]

Jules, our asynchronous coding agent, is now available for everyone (via) I wrote about the Jules beta back in May. Google's version of the OpenAI Codex PR-submitting hosted coding tool graduated from beta today.

I'm mainly linking to this now because I like the new term they are using in this blog entry: Asynchronous coding agent. I like it so much I gave it a tag.

I continue to avoid the term "agent" as infuriatingly vague, but I can grudgingly accept it when accompanied by a prefix that clarifies the type of agent we are talking about. "Asynchronous coding agent" feels just about obvious enough to me to be useful.

... I just ran a Google search for "asynchronous coding agent" -jules and came up with a few more notable examples of this name being used elsewhere:

# 6th August 2025, 7:36 pm / definitions, github, google, ai, generative-ai, llms, ai-assisted-programming, gemini, agent-definitions, asynchronous-coding-agents, jules

Vibe scraping and vibe coding a schedule app for Open Sauce 2025 entirely on my phone

Visit Vibe scraping and vibe coding a schedule app for Open Sauce 2025 entirely on my phone

This morning, working entirely on my phone, I scraped a conference website and vibe coded up an alternative UI for interacting with the schedule using a combination of OpenAI Codex and Claude Artifacts.

[... 2,189 words]

How to Fix Your Context. Drew Breunig has been publishing some very detailed notes on context engineering recently. In How Long Contexts Fail he described four common patterns for context rot, which he summarizes like so:

  • Context Poisoning: When a hallucination or other error makes it into the context, where it is repeatedly referenced.
  • Context Distraction: When a context grows so long that the model over-focuses on the context, neglecting what it learned during training.
  • Context Confusion: When superfluous information in the context is used by the model to generate a low-quality response.
  • Context Clash: When you accrue new information and tools in your context that conflicts with other information in the prompt.

In this follow-up he introduces neat ideas (and more new terminology) for addressing those problems.

Tool Loadout describes selecting a subset of tools to enable for a prompt, based on research that shows anything beyond 20 can confuse some models.

Context Quarantine is "the act of isolating contexts in their own dedicated threads" - I've called rhis sub-agents in the past, it's the pattern used by Claude Code and explored in depth in Anthropic's multi-agent research paper.

Context Pruning is "removing irrelevant or otherwise unneeded information from the context", and Context Summarization is the act of boiling down an accrued context into a condensed summary. These techniques become particularly important as conversations get longer and run closer to the model's token limits.

Context Offloading is "the act of storing information outside the LLM’s context". I've seen several systems implement their own "memory" tool for saving and then revisiting notes as they work, but an even more interesting example recently is how various coding agents create and update plan.md files as they work through larger problems.

Drew's conclusion:

The key insight across all the above tactics is that context is not free. Every token in the context influences the model’s behavior, for better or worse. The massive context windows of modern LLMs are a powerful capability, but they’re not an excuse to be sloppy with information management.

# 29th June 2025, 8:15 pm / definitions, ai, prompt-engineering, generative-ai, llms, drew-breunig, llm-tool-use, ai-agents, context-engineering, sub-agents

The term context engineering has recently started to gain traction as a better alternative to prompt engineering. I like it. I think this one may have sticking power.

Here's an example tweet from Shopify CEO Tobi Lutke:

I really like the term “context engineering” over prompt engineering.

It describes the core skill better: the art of providing all the context for the task to be plausibly solvable by the LLM.

Recently amplified by Andrej Karpathy:

+1 for "context engineering" over "prompt engineering".

People associate prompts with short task descriptions you'd give an LLM in your day-to-day use. When in every industrial-strength LLM app, context engineering is the delicate art and science of filling the context window with just the right information for the next step. Science because doing this right involves task descriptions and explanations, few shot examples, RAG, related (possibly multimodal) data, tools, state and history, compacting [...] Doing this well is highly non-trivial. And art because of the guiding intuition around LLM psychology of people spirits. [...]

I've spoken favorably of prompt engineering in the past - I hoped that term could capture the inherent complexity of constructing reliable prompts. Unfortunately, most people's inferred definition is that it's a laughably pretentious term for typing things into a chatbot!

It turns out that inferred definitions are the ones that stick. I think the inferred definition of "context engineering" is likely to be much closer to the intended meaning.

# 27th June 2025, 11:42 pm / andrej-karpathy, prompt-engineering, generative-ai, ai, llms, context-engineering, definitions

They poison their own context. Maybe you can call it context rot, where as context grows and especially if it grows with lots of distractions and dead ends, the output quality falls off rapidly. Even with good context the rot will start to become apparent around 100k tokens (with Gemini 2.5).

They really need to figure out a way to delete or "forget" prior context, so the user or even the model can go back and prune poisonous tokens.

Right now I work around it by regularly making summaries of instances, and then spinning up a new instance with fresh context and feed in the summary of the previous instance.

Workaccount2 on Hacker News, coining "context rot"

# 18th June 2025, 11:15 pm / definitions, ai, generative-ai, llms, long-context

The lethal trifecta for AI agents: private data, untrusted content, and external communication

Visit The lethal trifecta for AI agents: private data, untrusted content, and external communication

If you are a user of LLM systems that use tools (you can call them “AI agents” if you like) it is critically important that you understand the risk of combining tools with the following three characteristics. Failing to understand this can let an attacker steal your data.

[... 1,324 words]

Solomon Hykes just presented the best definition of an AI agent I've seen yet, on stage at the AI Engineer World's Fair:

Diagram showing AI agent interaction loop on pink background. Title reads "An agent is an LLM wrecking its environment in a loop." Flow shows: Human connects to LLM Call via dotted arrow, LLM Call connects to Environment via "Action" arrow, Environment connects back to LLM Call via "Feedback" arrow, and LLM Call connects down to "Stop" box via dotted arrow.

An AI agent is an LLM wrecking its environment in a loop.

I collect AI agent definitions and I really like this how this one combines the currently popular "tools in a loop" one (see Anthropic) with the classic academic definition that I think dates back to at least the 90s:

An agent is something that acts in an environment; it does something. Agents include worms, dogs, thermostats, airplanes, robots, humans, companies, and countries.

# 5th June 2025, 5:03 pm / ai-agents, llms, ai, generative-ai, agent-definitions, definitions

I was going slightly spare at the fact that every talk at this Anthropic developer conference has used the word "agents" dozens of times, but nobody ever stopped to provide a useful definition.

I'm now in the "Prompting for Agents" workshop and Anthropic's Hannah Moran finally broke the trend by saying that at Anthropic:

Agents are models using tools in a loop

I can live with that! I'm glad someone finally said it out loud.

# 22nd May 2025, 7:07 pm / anthropic, generative-ai, ai-agents, ai, llms, agent-definitions, definitions

Slopsquatting -- when an LLM hallucinates a non-existent package name, and a bad actor registers it maliciously. The AI brother of typosquatting.

Credit to @sethmlarson for the name

Andrew Nesbitt

# 12th April 2025, 4:30 pm / definitions, packaging, ai, generative-ai, llms, supply-chain, slop, ai-ethics, seth-michael-larson

Semantic Diffusion. I learned about this term today while complaining about how the definition of "vibe coding" is already being distorted to mean "any time an LLM writes code" as opposed to the intended meaning of "code I wrote with an LLM without even reviewing what it wrote".

I posted this salty note:

Feels like I'm losing the battle on this one, I keep seeing people use "vibe coding" to mean any time an LLM is used to write code

I'm particularly frustrated because for a few glorious moments we had the chance at having ONE piece of AI-related terminology with a clear, widely accepted definition!

But it turns out people couldn't be trusted to read all the way to the end of Andrej's tweet, so now we are back to yet another term where different people assume it means different things

Martin Fowler coined Semantic Diffusion in 2006 with this very clear definition:

Semantic diffusion occurs when you have a word that is coined by a person or group, often with a pretty good definition, but then gets spread through the wider community in a way that weakens that definition. This weakening risks losing the definition entirely - and with it any usefulness to the term. [...]

Semantic diffusion is essentially a succession of the telephone game where a different group of people to the originators of a term start talking about it without being careful about following the original definition.

What's happening with vibe coding right now is such a clear example of this effect in action! I've seen the same thing happen to my own coinage prompt injection over the past couple of years.

This kind of dillution of meaning is frustrating, but does appear to be inevitable. As Martin Fowler points out it's most likely to happen to popular terms - the more popular a term is the higher the chance a game of telephone will ensue where misunderstandings flourish as the chain continues to grow.

Andrej Karpathy, who coined vibe coding, posted this just now in reply to my article:

Good post! It will take some time to settle on definitions. Personally I use "vibe coding" when I feel like this dog. My iOS app last night being a good example. But I find that in practice I rarely go full out vibe coding, and more often I still look at the code, I add complexity slowly and I try to learn over time how the pieces work, to ask clarifying questions etc.

Animated GIF.  I have no idea what I'm doing - a dog wags its tail while inspecting the engine of a car and looking gormless

I love that vibe coding has an official illustrative GIF now!

# 23rd March 2025, 6:30 pm / definitions, language, andrej-karpathy, vibe-coding, martin-fowler, semantic-diffusion

Not all AI-assisted programming is vibe coding (but vibe coding rocks)

Vibe coding is having a moment. The term was coined by Andrej Karpathy just a few weeks ago (on February 6th) and has since been featured in the New York Times, Ars Technica, the Guardian and countless online discussions.

[... 1,486 words]

There's a new kind of coding I call "vibe coding", where you fully give in to the vibes, embrace exponentials, and forget that the code even exists. It's possible because the LLMs (e.g. Cursor Composer w Sonnet) are getting too good. Also I just talk to Composer with SuperWhisper so I barely even touch the keyboard.

I ask for the dumbest things like "decrease the padding on the sidebar by half" because I'm too lazy to find it. I "Accept All" always, I don't read the diffs anymore. When I get error messages I just copy paste them in with no comment, usually that fixes it. The code grows beyond my usual comprehension, I'd have to really read through it for a while. Sometimes the LLMs can't fix a bug so I just work around it or ask for random changes until it goes away.

It's not too bad for throwaway weekend projects, but still quite amusing. I'm building a project or webapp, but it's not really coding - I just see stuff, say stuff, run stuff, and copy paste stuff, and it mostly works.

Andrej Karpathy

# 6th February 2025, 1:38 pm / definitions, ai, andrej-karpathy, generative-ai, llms, ai-assisted-programming, vibe-coding, cursor

2024

Building effective agents (via) My principal complaint about the term "agents" is that while it has many different potential definitions most of the people who use it seem to assume that everyone else shares and understands the definition that they have chosen to use.

This outstanding piece by Erik Schluntz and Barry Zhang at Anthropic bucks that trend from the start, providing a clear definition that they then use throughout.

They discuss "agentic systems" as a parent term, then define a distinction between "workflows" - systems where multiple LLMs are orchestrated together using pre-defined patterns - and "agents", where the LLMs "dynamically direct their own processes and tool usage". This second definition is later expanded with this delightfully clear description:

Agents begin their work with either a command from, or interactive discussion with, the human user. Once the task is clear, agents plan and operate independently, potentially returning to the human for further information or judgement. During execution, it's crucial for the agents to gain “ground truth” from the environment at each step (such as tool call results or code execution) to assess its progress. Agents can then pause for human feedback at checkpoints or when encountering blockers. The task often terminates upon completion, but it’s also common to include stopping conditions (such as a maximum number of iterations) to maintain control.

That's a definition I can live with!

They also introduce a term that I really like: the augmented LLM. This is an LLM with augmentations such as tools - I've seen people use the term "agents" just for this, which never felt right to me.

The rest of the article is the clearest practical guide to building systems that combine multiple LLM calls that I've seen anywhere.

Most of the focus is actually on workflows. They describe five different patterns for workflows in detail:

  • Prompt chaining, e.g. generating a document and then translating it to a separate language as a second LLM call
  • Routing, where an initial LLM call decides which model or call should be used next (sending easy tasks to Haiku and harder tasks to Sonnet, for example)
  • Parallelization, where a task is broken up and run in parallel (e.g. image-to-text on multiple document pages at once) or processed by some kind of voting mechanism
  • Orchestrator-workers, where a orchestrator triggers multiple LLM calls that are then synthesized together, for example running searches against multiple sources and combining the results
  • Evaluator-optimizer, where one model checks the work of another in a loop

These patterns all make sense to me, and giving them clear names makes them easier to reason about.

When should you upgrade from basic prompting to workflows and then to full agents? The authors provide this sensible warning:

When building applications with LLMs, we recommend finding the simplest solution possible, and only increasing complexity when needed. This might mean not building agentic systems at all.

But assuming you do need to go beyond what can be achieved even with the aforementioned workflow patterns, their model for agents may be a useful fit:

Agents can be used for open-ended problems where it’s difficult or impossible to predict the required number of steps, and where you can’t hardcode a fixed path. The LLM will potentially operate for many turns, and you must have some level of trust in its decision-making. Agents' autonomy makes them ideal for scaling tasks in trusted environments.

The autonomous nature of agents means higher costs, and the potential for compounding errors. We recommend extensive testing in sandboxed environments, along with the appropriate guardrails

They also warn against investing in complex agent frameworks before you've exhausted your options using direct API access and simple code.

The article is accompanied by a brand new set of cookbook recipes illustrating all five of the workflow patterns. The Evaluator-Optimizer Workflow example is particularly fun, setting up a code generating prompt and an code reviewing evaluator prompt and having them loop until the evaluator is happy with the result.

# 20th December 2024, 5:50 am / definitions, ai, prompt-engineering, generative-ai, llms, anthropic, llm-tool-use, ai-agents, agent-definitions

Imitation Intelligence, my keynote for PyCon US 2024

Visit Imitation Intelligence, my keynote for PyCon US 2024

I gave an invited keynote at PyCon US 2024 in Pittsburgh this year. My goal was to say some interesting things about AI—specifically about Large Language Models—both to help catch people up who may not have been paying close attention, but also to give people who were paying close attention some new things to think about.

[... 10,624 words]

Slop is the new name for unwanted AI-generated content

Visit Slop is the new name for unwanted AI-generated content

I saw this tweet yesterday from @deepfates, and I am very on board with this:

[... 301 words]

Watching in real time as "slop" becomes a term of art. the way that "spam" became the term for unwanted emails, "slop" is going in the dictionary as the term for unwanted AI generated content

@deepfates

# 7th May 2024, 3:59 pm / definitions, ethics, spam, ai, generative-ai, llms, slop, ai-ethics

Prompt injection and jailbreaking are not the same thing

I keep seeing people use the term “prompt injection” when they’re actually talking about “jailbreaking”.

[... 1,157 words]

2023

The Dual LLM pattern for building AI assistants that can resist prompt injection

I really want an AI assistant: a Large Language Model powered chatbot that can answer questions and perform actions for me based on access to my private data and tools.

[... 2,632 words]

2022

The Perfect Commit

For the last few years I’ve been trying to center my work around creating what I consider to be the Perfect Commit. This is a single commit that contains all of the following:

[... 2,061 words]

Prompt injection attacks against GPT-3

Visit Prompt injection attacks against GPT-3

Riley Goodside, yesterday:

[... 1,457 words]

2017

The denormalized query engine design pattern

Visit The denormalized query engine design pattern

I presented this talk at DjangoCon 2017 in Spokane, Washington. Below is the abstract, the slides and the YouTube video of the talk.

[... 356 words]

2007

SOA [...] is the generally held belief that when implementing systems one should expose system functionality for general consumption directly from the network, as well as or instead of burying it behind a user interface.

Pete Lacey

# 6th October 2007, 1:44 am / definitions, pete-lacey, service-oriented-architecture